1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

Attention Assist: A High-Level Information Fusion Framework for Situation and Threat Assessment in V

شروع موضوع توسط AdMiN ‏26/1/17 در انجمن امنیت و الگوریتم های امنتیتی

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. AdMiN

    AdMiN Administrator هیات مدیره

    Driver inattentiveness constitutes the main cause of road accidents, which makes it a major factor in road safety. In this paper, we propose a comprehensive framework to address the road safety problem by tackling it from a high-level information fusion standpoint, considering vehicular ad hoc networks (VANETs) as the deployment platform. The proposed framework relies on the multientity Bayesian networks (MEBNs), which exploit the expressiveness of first-order logic for semantic relations, and the strength of the Bayesian networks in handling uncertainty. First, the entities that influence the inattention phenomenon, as well as both their causal and semantic relationships, are identified. Next, an MEBN-based high-level information fusion framework is proposed through which entities, situations, and their relationships in specific contexts are modeled using MEBN fragments. Furthermore, MEBN inference is used to assess the situations of interest by estimating their states. To demonstrate the capabilities of the proposed framework, a collision warning system simulator has been developed, which evaluates the likelihood of a vehicle being in a near-collision situation using a wide variety of local and global information sources available in various VANET environments. If the threat of being in a near-collision situation is determined to be high, then the driver is warned accordingly. Our experimental results for two distinct single-vehicle and multivehicle categories of driving scenarios, as well as a novel hybrid MEBN inference, demonstrate the capability of the proposed framework to efficiently achieve situation and threat assessment on the road.​


    لینک دانلود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید