1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

Historical Spectrum Sensing Data Mining for Cognitive Radio Enabled Vehicular Ad-Hoc Networks

شروع موضوع توسط AdMiN ‏2/2/17 در انجمن انجمن VANET

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. Administrator
    AdMiN
    هیات مدیره کاربر ویژه
    تاریخ عضویت:
    ‏3/10/13
    ارسال ها:
    2,287
    تشکر شده:
    325
    In vehicular ad-hoc network (VANET), the reliability of communication is associated with driving safety. However, research shows that the safety-message transmission in VANET may be congested under some urgent communication cases. More spectrum resource is an effective way to solve transmission congestion. Hence, we introduce cognitive radio (CR) enabled VANET (CR-VANET), where CR device can detect possible idle spectrum for VANET communications and assist to timely broadcast safety-message. Given high-speed mobility of vehicles and dynamically-changing availability of channels, a novel prediction algorithm is proposed to pick out the channel with the greatest probability of availability, which can meet the quality of service (QoS) requirement of urgent communications and effectively avoid conflict with licensed users. Specifically, the spatiotemporal correlations among historical spectrum sensing data are exploited to form prior knowledge of channel availability probability, and Bayesian inference is used to derive posterior probability of channel availability. Comparing with other spectrum detection methods, the proposed algorithm has more than 8 percent detection performance improvement at false alarm probability 0.2, and thus can avoid access conflict with licensed users dramatically. Furthermore, the proposed algorithm always has larger packet reception probability (PRP) and lower transmission delay compared with conventional VANET broadcasting. Hence, the proposed algorithm can improve reliability of safety-message transmission and enhance driving safety significantly​


    لینک دانلود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید