1.   مشاوره و انجام پروپوزال برای پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               OPNET ، MATLAB ، JSIM و OMNET++
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

Breaking the Gridlock of Spatial Correlations in GPS-Aided IEEE 802.11p-Based Cooperative Positioni

شروع موضوع توسط AdMiN ‏7/2/17 در انجمن الگوریتم های لایه MAC

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. AdMiN

    AdMiN Administrator هیات مدیره

    Spatial correlations found in vehicular mobility are jeopardizing the precision level of cooperative positioning for future Cooperative Intelligent Transport System (C-ITS) applications. Bayesian filters traditionally assume independence of the measurement noise terms over space between different vehicles and over time at each vehicle, whereas they are actually correlated due to the local continuity of physical propagation phenomena (e.g., shadowing, multipath, etc.) under highly constrained vehicular mobility. In this paper, we break this gridlock by proposing an innovative data fusion framework capable of mitigating these effects to maintain the positioning precision level under severely correlated environments. We first illustrate the dramatic impact of correlated noise affecting both global positioning system and vehicle-to-vehicle (V2V) received power observations. Then, we propose a new generic data fusion framework based on a particle filter supporting three complementary methods to decorrelate measurement noises in a globally asynchronous context. Compared with conventional cooperative positioning, simulations performed in canonical vehicular scenarios (highway, urban canyon, tunnel) show that our proposed approach could provide up to 60% precision improvement in correlated environments, while matching by less than 15-20% deviation, an optimal cooperative positioning scheme considered under independent measurements​

    لینک دانلود در پست بعد برای اعضائ قایل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید