1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

Traffic big data analysis supporting vehicular network access recommendation

شروع موضوع توسط AdMiN ‏13/2/17 در انجمن انجمن VANET

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. AdMiN

    AdMiN Administrator هیات مدیره

    With the explosive growth of Internet of Vehicles (IoV), it is undoubted that vehicular demands for real-time Internet access would get a surge in the near future. Therefore, it is foreseeable that the cars within the IoV will generate enormous data. On the one hand, the huge volume of data mean we could get much information (e.g., vehicle's condition and real-time traffic distribution) through the big data analysis. On the other hand, the huge volume of data will overload the cellular network since the cellular infrastructure still represents the dominant access methods for ubiquitous connections. The vehicular ad hoc network (VANET) offloading is a promising solution to alleviate the conflict between the limited capacity of cellular network and big data collection. In a vehicular heterogeneous network formed by cellular network and VANET, an efficient network selection is crucial to ensure vehicles' quality of service. To address this issue, we develop an intelligent network recommendation system supported by traffic big data analysis. Firstly, the traffic model for network recommendation is built through big data analysis. Secondly, vehicles are recommended to access an appropriate network by employing the analytic framework which takes traffic status, user preferences, service applications and network conditions into account. Furthermore an Android application is developed, which enables individual vehicle to access network automatically based on the access recommender. Finally, extensive simulation results show that our proposal can effectively select the optimum network for vehicles, and network resource is fully utilized at the same time.​


    لینک دانلود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید