1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

3-D Target Localization in Wireless Sensor Networks Using RSS and AoA Measurements

شروع موضوع توسط AdMiN ‏24/10/17 در انجمن مکان یابی و الگوریتم های مکان یابی

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. AdMiN

    AdMiN Administrator هیات مدیره

    This paper addresses target localization problems in both noncooperative and cooperative 3-D wireless sensor networks (WSNs), for both cases of known and unknown sensor transmit power, i.e., PT . We employ a hybrid system that fuses distance and angle measurements, extracted from the received signal strength and angle-of-arrival information, respectively. Based on range and angle measurement models, we derive a novel nonconvex estimator based on the least squares criterion. The derived nonconvex estimator tightly approximates the maximum-likelihood estimator for small noise. We then show that the developed estimator can be transformed into a generalized trust region subproblem framework, by following the squared range approach, for noncooperative WSNs. For cooperative WSNs, we show that the estimator can be transformed into a convex problem by applying appropriate semidefinite programming relaxation techniques. Moreover, we show that the generalization of the proposed estimators for known PT is straightforward to the case where PT is not known. Our simulation results show that the new estimators have excellent performance and are robust to not knowing PT . The new estimators for noncooperative localization significantly outperform the existing estimators, and our estimators for cooperative localization show exceptional performance in all considered settings.​


    لینک دانود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید