1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

Unbalanced Expander Based Compressive Data Gathering in Clustered Wireless Sensor Networks

شروع موضوع توسط AdMiN ‏24/3/18 در انجمن WSN

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. Administrator
    AdMiN
    هیات مدیره کاربر ویژه
    تاریخ عضویت:
    ‏3/10/13
    ارسال ها:
    2,287
    تشکر شده:
    325
    Abstract:
    Conventional compressive sensing-based data gathering (CS-DG) algorithms require a large number of sensors for each compressive sensing measurement, thereby resulting in high energy consumption in clustered wireless sensor networks (WSNs). To solve this problem, we propose a novel energy-efficient CS-DG algorithm, which exploits the better reconstruction accuracy of the adjacency matrix of an unbalanced expander graph. In the proposed CS-DG algorithm, each measurement is the sum of a few sensory data, which are jointly determined by random sampling and random walks. Through theoretical analysis, we prove that the constructed M × N sparse binary sensing matrix is the adjacency matrix of a (k, ε) unbalanced expander graph when M = O (k log N/k) and t = O (Nc/(kq)) for WSNs with Nc clusters, where 0 ≤ q ≤ 1 and Nc > k. Simulation results show our proposed CS-DG has better performance than existing algorithms in terms of reconstruction accuracy and energy consumption. When hybrid energy-efficient distributed clustering algorithm is used, to achieve the same reconstruction accuracy, our proposed CS-DG can save energy by at least 27.8%.​


    لینک دانلود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید