1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

WNN-LQE: Wavelet-Neural-Network-Based Link Quality Estimation for Smart Grid WSNs

شروع موضوع توسط AdMiN ‏5/5/18 در انجمن WSN

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. Administrator
    AdMiN
    هیات مدیره
    تاریخ عضویت:
    ‏3/10/13
    ارسال ها:
    2,234
    تشکر شده:
    327
    Wireless sensor networks (WSNs) are currently being used for monitoring and control in smart grids. To ensure the quality of service (QoS) requirements of smart grid applications, WSNs need to provide specific reliability guarantees. Real-time link quality estimation (LQE) is essential for improving the reliability of WSN protocols. However, many state-of-the-art LQE methods produce numerical estimates that are suitable neither for describing the dynamic random features of radio links nor for determining whether the reliability satisfies the requirements of smart grid communication standards. This paper proposes a wavelet-neural-network-based LQE (WNN-LQE) algorithm that closes the gap between the QoS requirements of smart grids and the features of radio links by estimating the probability-guaranteed limits on the packet reception ratio (PRR). In our algorithm, the signal-to-noise ratio (SNR) is used as the link quality metric. The SNR is approximately decomposed into two components: a time-varying nonlinear part and a non-stationary random part. Each component is separately processed before it is input into the WNN model. The probability-guaranteed limits on the SNR are obtained from the WNN-LQE algorithm and are then transformed into estimated limits on the PRR via the mapping function between the SNR and PRR. Comparative experimental results are presented to demonstrate the validity and effectiveness of the proposed LQE algorithm.​

    لینک دانلود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید