1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

Compressed Sensing in Multi-Hop Large-Scale Wireless Sensor Networks Based on Routing Topology Tomog

شروع موضوع توسط AdMiN ‏2/6/18 در انجمن الگوریتم های مسیریابی

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. Administrator
    AdMiN
    هیات مدیره
    تاریخ عضویت:
    ‏3/10/13
    ارسال ها:
    2,194
    تشکر شده:
    316
    Data acquisition from multi-hop large-scale outdoor wireless sensor network (WSN) deployments for environmental monitoring is full of challenges. This is because the severe resource constraints on tiny battery-operated motes (e.g., bandwidth, memory, power, and computing capacity), the data acquisition volume from large-scale WSNs, and the highly dynamic wireless link conditions in outdoor harsh communication environments. We present a novel compressed sensing approach which can recover the sensing data at the sink with high fidelity when very few data packets need be collected, leading to a significant reduction of the network transmissions and thus an extension of the WSN lifetime. Interplaying with the dynamic WSN routing topology, the proposed approach is both efficient and simple to implement on the resource-constrained motes without motes’ storing of any part of the random projection matrix, as opposed to other existing compressed sensing based schemes. We further propose a systematic method via machine learning to find a suitable representation basis, for any given WSN deployment and data field, which is both sparse and incoherent with the random projection matrix in compressed sensing for data collection. We validate our approach and evaluate its performance using a real-world outdoor multi-hop WSN testbed deployment in situ. The results demonstrate that our approach significantly outperforms existing compressed sensing approaches by reducing data recovery errors by an order of magnitude for the entire WSN observation field, while drastically reducing wireless communication costs at the same time.​


    لینک دانلود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید