1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

An Efficient SDN-based DDoS Attack Detection and Rapid Response Platform in Vehicular Networks

شروع موضوع توسط AdMiN ‏10/7/18 در انجمن SDN

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. Administrator
    AdMiN
    هیات مدیره
    تاریخ عضویت:
    ‏3/10/13
    ارسال ها:
    2,191
    تشکر شده:
    316
    With the prosperity of wireless networks, Vehicular Networks (VNs) have been extensively studied in recent years. It is deployed to ensure road safety, enhance driving experience and reduce traffic congestion. However, VNs are vulnerable to various attacks, especially Distributed Denial of Service (DDoS) that attackers control a large number of compromise nodes inside the networks to occupy the network resources of legitimate users and impact the communication among vehicles and between vehicles and infrastructure. In this paper, we design a platform to efficiently detect and rapidly respond to DDoS attack in VNs based on Software Defined Networking (SDN). The proposed platform not only contains the trigger mechanism based on message of OpenFlow protocol (i.e., PACKET_IN message) for response not timely, but also involves a flow feature extraction strategy based on multi-dimensional information. Moreover, we construct effective global network flow table feature values based on OpenFlow flow table feature and the entropy feature of flow table entry. We determine all flow table entry by the trained SVM. By analyzing the simulation results, we verify that the detection scheme effectively reduces the time for starting attack detection and classification recognition and has a lower false alarm rate.​

    لینک دانلود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید