1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

Bi-dimensional Signal Compression Based on Linear Prediction Coding: Application to WSN

شروع موضوع توسط Hossein Ranjbaran ‏5/1/20 در انجمن WSN

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. Administrator
    Hossein Ranjbaran
    کاربر ویژه
    تاریخ عضویت:
    ‏3/10/13
    ارسال ها:
    1,034
    تشکر شده:
    197
    The big data phenomenon has gained much attention in the wireless communications field. Addressing big data Is a challenging and time-demanding task that requires a large computational infrastructure to ensure successful data processing and analysis. In such a context, data compression helps to reduce the amount of data required to represent redundant information while reliably preserving the original content as much as possible. We here consider Compressed Sensing (CS) theory for extracting critical information and representing it with substantially reduced measurements of the original data. For CS application, it is, however, required to design a convenient sparsifying basis or transform. In this work, a large amount of bi-dimensional (2D) correlated signals are considered for compression. The envisaged application is that of data collection in large scale Wireless Sensor Networks. We show that, using CS, it is possible to recover a large amount of data from the collection of a reduced number of sensors readings. In this way, CS use makes it possible to recover large data sets with acceptable accuracy as well as reduced global scale cost. For sparsifying basis search, in addition to conventional sparsity-inducing methods, we propose a new transformation based on Linear Prediction Coding (LPC) that effectively exploits correlation between neighboring data. The steps of data aggregation using CS include sparse compression basis design and then decomposition matrix construction and recovery algorithm application. Comparisons to the case of one-dimensional (1D) reading and to conventional 2D compression methods show the benefit from the better exploitation of the correlation by herein envisaged 2D processing. Simulation results on both synthetic and real WSN data demonstrate that the proposed LPC approach with 2D scenario realizes significant reconstruction performance enhancement compared to former conventional transformations ​

    لینک دانلود در پست بعد برای اعضائ قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید