1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

No-Reference Video Quality Estimation Based on Machine Learning for Passive Gaming Video Streaming

شروع موضوع توسط Hossein Ranjbaran ‏6/2/20 در انجمن انجمن WMN

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. Administrator
    Hossein Ranjbaran
    کاربر ویژه
    تاریخ عضویت:
    ‏3/10/13
    ارسال ها:
    1,030
    تشکر شده:
    197
    Recent years have seen increasing growth and popularity of gaming services, both interactive and passive. While interactive gaming video streaming applications have received much attention, passive gaming video streaming, in-spite of its huge success and growth in recent years, has seen much less interest from the research community. For the continued growth of such services in the future, it is imperative that the end user gaming quality of experience (QoE) is estimated so that it can be controlled and maximized to ensure user acceptance. Previous quality assessment studies have shown not so satisfactory performance of existing No-reference (NR) video quality assessment (VQA) metrics. Also, due to the inherent nature and different requirements of gaming video streaming applications, as well as the fact that gaming videos are perceived differently from non-gaming content (as they are usually computer generated and contain artificial/synthetic content), there is a need for application-specific light-weight, no-reference gaming video quality prediction models. In this paper, we present two NR machine learning-based quality estimation models for gaming video streaming, NR-GVSQI, and NR-GVSQE, using NR features, such as bitrate, resolution, and temporal information. We evaluate their performance on different gaming video datasets and show that the proposed models outperform the current state-of-the-art no-reference metrics, while also reaching a prediction accuracy comparable to the best known full reference metric.​


    لینک دانلود در پست بعد برای اعضاء قابل مشاهده است.
     
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید