1.   مشاوره و انجام پروپوزال  و پایان نامه ، مشاوره در زمینه ارائه سمینار، 
       مشاوره و انجام مقاله های بین المللی و داخلی، 
       مشاوره و انجام مقاله در مجله های علمی پژوهشی معتبر، 
        مشاوره و آموزش شبیه سازی شبکه توسط شبیه ساز آکادمیک 2-NS، 
         مشاوره و آموزش شبیه سازهای ترافیک شهری از قبیل  SUMO، ONE، و ...
          کمک به دانشجویان برای پیاده سازی ایده ها و مقالات خود با شبیه سازهای
               NS2, NS3 , OMNET++ , ONE
     
    
                 شماره تماس :
                         حسین رنجبران:    09101607834   
                                          
    
                  ساعات تماس: 
                                      ۸ الی ۲۰
                         
                   ایمیل:
                         hossein.ranjbaran.it@gmail.com
                        
           
    

RSSI-based Localization Algorithms using Spatial Diversity in Wireless Sensor Networks

شروع موضوع توسط Hossein Ranjbaran ‏8/10/14 در انجمن مکان یابی و الگوریتم های مکان یابی

وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.
  1. Hossein Ranjbaran

    Hossein Ranjbaran Administrator کاربر ویژه

    Many localization algorithms in Wireless Sensor Networks (WSNs) are based on received signal strength indication (RSSI). Although they present some advantages in terms of complexity and energy consumption, RSSI values, especially in indoor environments, are very unstable due to fading induced by shadowing effect and multipath propagation. In this paper, we propose a comparative study of RSSI-based localization algorithms using spatial diversity in WSNs. We consider different kinds of single / multiple antenna systems: Single Input Single Output (SISO) system, Single Input Multiple Output (SIMO) system, Multiple Input Single Output (MISO) system and Multiple Input Multiple Output (MIMO) system. We focus on the well known trilateration and multilateration localization algorithms to evaluate and compare different antenna systems. Exploiting spatial diversity by using multiple antenna systems improve significantly the accuracy of the location estimation. We use three diversity combining techniques at the receiver: Maximal Ratio Combiner (MRC), Equal Gain Combining (EGC) and Selection Combining (SC). The obtained results show that the localization performance in terms of position accuracy is improved when using multiple antennas. Specifically, using multiple antennas at the both sides present better performance than using multiple antennas at the transmitter as well as the receiver side. We also conclude that MRC diversity combining technique outperforms EGC that as well outperforms SC


    لینک دانلود در پست یعد برای اعضاء قابل مشاهده است.​
     
    batouei و ali_nilofar از این پست تشکر کرده اند.
وضعیت موضوع:
You must be a logged-in, registered member of this site to view further posts in this thread.

این صفحه را به اشتراک بگذارید